Generalized Gelfand invariants of quantum groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24937
(http://iopscience.iop.org/0305-4470/24/5/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:09

Please note that terms and conditions apply.

Generalized Gelfand invariants of quantum groups

R B Zhang, M D Gould and A J Bracken
Department of Mathematics, University of Queensland, Brisbane QLD 4072, Australia

Received 26 October 1990

Abstract

Generalized Gelfand invariants of quantum groups are explicitly constructed, using a general procedure given in an earlier publication together with the KirillovReshetikhin formula for universal R-matrices. As examples, invariants of $\mathrm{U}_{g}(\mathrm{so}(5))$ are considered.

1. Introduction

In an earlier publication [1], we presented a general method for constructing quantum group invariants using universal R-matrices, and determined their eigenvalues in arbitrary irreducible highest weight representations. These invariants reduce to (slight variations of) the Gelfand invariants of the corresponding simple Lie algebras in the $q \rightarrow 1$ limit. (For a discussion of Gelfand invariants see [2,3] and especially [4].) As we demonstrated with the example of $U_{q}(s l(m))$, this method enables one to construct explicitly the generalized Gelfand invariants of a quantum group whenever the universal R-matrix is known.

Recently, Kirillov and Reshetikhin [5] have developed an explicit formula for universal R-matrices of quantum groups by studying the associated q-Weyl groups. The aim of this paper is to apply their formula to the general method developed in [1], and thus to obtain the generalized Gelfand invariants of quantum groups in explicit form.

As a concrete example, we study the simplest non- $\boldsymbol{A}_{N}-$ type quantum group, U_{q} (so(5)), in some detail. Previously, the generalized Gelfand invariants of the quantum groups $\mathrm{U}_{q}\left(A_{N}\right)$ were studied quite extensively $[1,6-8]$, especially those of $\mathrm{U}_{q}\left(A_{1}\right)$ and $\mathrm{U}_{q}\left(A_{2}\right)$ [8]. However, none of the invariants of other quantum groups were given explicitly before. The case of $U_{q}(s o(5))$ is of particular interest because it is the simplest quantum group arising from the deformation of the universal enveloping algebra of a Lie algebra whose roots are not all of equal length, i.e. one that is not simply laced. Consequently, this case exhibits features which the A_{N}-type quantum groups do not. For example, the quantum Weyl group of $\mathrm{U}_{q}(\mathrm{so}(5))$ differs markedly from that of $\mathrm{U}_{q}\left(\boldsymbol{A}_{N}\right)$.

2. Quantum groups

Recall that $[6,7,9]$ corresponding to each simple Lie algebra g of rank r there is a quantum group $\mathrm{U}_{q}(g)$ generated by simple elements e_{i}, f_{i} and Cartan elements h_{i}, for $i=1,2, \ldots, r$. Let $\left\{\alpha_{i} \mid i=1,2, \ldots, r\right\}$ be a set of simple roots of g, and let $\left(a_{i j}\right)$ be the
corresponding Cartan matrix, where $a_{i j}=2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{i}\right)$, with (\cdot, \cdot) the invariant bilinear form on H^{*}, normalized in such a way that the maximum value of (α_{i}, α_{i}) for $i=1,2, \ldots, r$ is 2 . Here H^{*} is the dual of the vector space H spanned by the h_{j} 's. Then e_{i}, f_{i}, h_{i} are required to satisfy the following relations:

$$
\begin{align*}
& {\left[h_{i}, h_{j}\right]=0} \\
& {\left[h_{i}, e_{j}\right]=\left(\alpha_{i}, \alpha_{j}\right) e_{j} \quad\left[h_{i}, f_{j}\right]=-\left(\alpha_{i}, \alpha_{j}\right) f_{j} \quad \forall i, j} \\
& \sum_{t=0}^{1-a_{i 1}}(-1)^{t}\left[\begin{array}{c}
1-a_{i j} \\
t
\end{array}\right]_{q_{i}} e_{i}^{1-a_{i j}-t} e_{j} e_{i}^{\prime}=0 \quad i \neq j \tag{1}\\
& \sum_{t=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{cc}
1-a_{i j} \\
t
\end{array}\right]_{q_{i}} f_{i}^{1-a_{i j}-t} f_{j} f_{i}^{t}=0 \quad i \neq j
\end{align*}
$$

where $0 \neq q \in \mathbb{C}, q_{i}=q^{\left(\alpha_{i}, \alpha_{1}\right) / 2}$, and

$$
\left[\begin{array}{l}
m \\
n
\end{array}\right]_{q}= \begin{cases}{[m]_{q}!/\left([m-n]_{q}![n]!\right)} & m>n>0 \\
1 & n=0, m\end{cases}
$$

with

$$
\begin{aligned}
& {[m]_{q}=\left(q^{m}-q^{-m}\right) /\left(q-q^{-1}\right)} \\
& {[m]_{q}!=[m]_{q}[m-1]_{q} \ldots[1]_{q} .}
\end{aligned}
$$

Then $\mathrm{U}_{q}(g)$ has the structure of a Hopf algebra with the co-multiplication $\Delta: \mathrm{U}_{q}(g) \rightarrow$ $\mathrm{U}_{q}(g) \otimes \mathrm{U}_{q}(g)$

$$
\begin{aligned}
& \Delta\left(e_{i}\right)=e_{i} \otimes q^{h_{i} / 2}+q^{-h_{i} / 2} \otimes e_{i} \\
& \Delta\left(f_{i}\right)=f_{i} \otimes q^{h_{i} / 2}+q^{-h_{i} / 2} \otimes f_{i} \\
& \Delta\left(h_{i}\right)=h_{i} \otimes 1+1 \otimes h_{i} \quad \forall i
\end{aligned}
$$

co-unit $\varepsilon: \mathrm{U}_{q}(g) \rightarrow \mathbb{C}$

$$
\varepsilon(1)=1 \quad \varepsilon\left(h_{i}\right)=\varepsilon\left(e_{i}\right)=\varepsilon\left(f_{i}\right)=0 \quad \forall i
$$

and antipode $S: \mathrm{U}_{q}(g) \rightarrow \mathrm{U}_{q}(g)$

$$
S(1)=1 \quad S\left(h_{i}\right)=-h_{i} \quad S\left(e_{i}\right)=-q_{i} e_{i} \quad S\left(f_{i}\right)=-q_{i}^{-1} f_{i} .
$$

For each $U_{q}(g)$, there exists an invertible element $R \in U_{q}(g) \otimes U_{q}(g)$, which is called the universal R-matrix of $\mathrm{U}_{q}(g)$, such that

$$
\begin{array}{lr}
R \Delta(a)=\Delta^{\prime}(a) R & \forall a \in \mathrm{U}_{q}(g) \\
(\Delta \otimes \mathrm{i} d) R=R_{13} R_{23} & (\mathrm{i} d \otimes \Delta) R=R_{13} R_{12}
\end{array}
$$

where $\Delta^{\prime}=T \cdot \Delta$ with $T: \mathrm{U}_{q}(g) \otimes \mathrm{U}_{q}(g) \rightarrow \mathrm{U}_{q}(g) \otimes \mathrm{U}_{q}(g)$ defined by

$$
T(a \otimes b)=b \otimes a \quad \forall a, b \in \mathrm{U}_{q}(g)
$$

and we say that $\left(\mathrm{U}_{q}(g), R\right)$ constitutes a quasitriangular Hopf algebra [9].
An explicit formula for the universal R-matrix has been obtained by Kirillov and Reshetikhin [5] using quantum Weyl group techniques, which reads

$$
\begin{gather*}
R=q^{\sum_{\mu=1}^{r} H_{\mu} \otimes H_{\mu}} \sum_{\{n\}} \prod_{p=1}^{K} \frac{\left(1-q^{-2}(p)\right)^{n_{r}}}{\left(n_{p}\right)_{q(p)}!}(E(1))^{n_{1}}(E(2))^{n_{2}} \ldots(E(K))^{n_{K}} \\
\otimes(F(1))^{n_{1}}(F(2))^{n_{2}} \ldots(F(K))^{n_{K}} \tag{2}
\end{gather*}
$$

where

$$
\begin{aligned}
& n_{p} \in \mathbb{Z}^{+} \quad \forall p \\
& K=\frac{1}{2}(\operatorname{dim} g-r) \\
& (n)_{q}!=\prod_{i=1}^{n} \frac{1-q^{-2 i}}{1-q^{-2}} \\
& q(p)=q^{(\alpha(p), \alpha(p)) / 2}
\end{aligned}
$$

with $\alpha(p) \in H^{*}$ defined by $\left[h_{i}, E(p)\right]=\left(\alpha_{i}, \alpha(p)\right) E(p), \forall i \operatorname{In}(2), H_{\mu}, \mu=1,2, \ldots, r$ are the Cartan elements such that

$$
\sum_{\mu=1}^{\Gamma} \alpha\left(H_{\mu}\right) \beta\left(H_{\mu}\right)=(\alpha, \beta) \quad \forall \alpha, \beta \in H^{*}
$$

where $\alpha\left(H_{\mu}\right), \beta\left(H_{\mu}\right) \in \mathbb{C}$ are the evaluations of $\alpha, \beta \in H^{*}$ on $H_{\mu} \in H$. The $E(p)$, $F(p) \in \mathrm{U}_{q}(g), \forall p$ are defined explicitly in [5]. Due to the lack of space we do not describe them here and refer to [5] for details. However, it is worth pointing out that in the limit $q \rightarrow 1, E(p)$ and $F(p)$ reduce respectively to the raising and lowering operators of g shifting weight by $\alpha(p)$.

3. Invariants of quantum groups

Define

$$
\Gamma=R^{T} R \quad R^{T}=T(R)
$$

It is important to observe that $\Gamma \neq 1 \otimes 1$ since $U_{q}(g)$ is not triangular, though quasitriangular. Let $\pi_{\Lambda_{0}}$ be a non-trivial representation of $\mathrm{U}_{q}(g)$ afforded by the finite-dimensional irreducible module $V\left(\Lambda_{0}\right)$ with highest weight Λ_{0}, and assume that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ are the distinct weights of $V\left(\Lambda_{0}\right)$ with multiplicities $d_{1}, d_{2}, \ldots, d_{N}$ respectively. Now we construct $[1,10]$

$$
\begin{equation*}
C^{\Lambda_{0}}=\operatorname{tr}_{\pi_{\Lambda_{0}}}\left[\left(\mathbf{i} d \otimes \pi_{\Lambda_{0}}\right)\left(1 \otimes q^{2 h \rho}\right) \Gamma\right] \in \mathrm{U}_{q}(g) \tag{3}
\end{equation*}
$$

where the trace is taken over the irreducible representation $\pi_{\Lambda_{0}}$, and $h_{\rho} \in H \subset \mathrm{U}_{q}(g)$ is the Cartan element such that $\beta\left(h_{\rho}\right)=(\beta, \rho), \forall \beta \in H^{*}$, with

$$
\rho=\frac{1}{2} \sum_{p=1}^{K} \alpha(p) .
$$

Using results from [10] we proved in [1] that $C^{\Lambda_{0}}$ belongs to the centre of $U_{4}(g)$, and when acting on the irreducible $\mathrm{U}_{q}(g)$-module $V(\Lambda)$ with highest weight Λ, takes the eigenvalue

$$
\begin{equation*}
\chi_{\Lambda}\left(C^{\Lambda_{0}}\right)=\sum_{i=1}^{N} d_{l} q^{2\left(\Lambda+\rho, \lambda_{t}\right)} . \tag{4}
\end{equation*}
$$

Observe that when $V(\Lambda)$ is trivial, i.e. $\Lambda=0$, then $\chi_{\Lambda}\left(C^{\Lambda_{0}}\right)$ coincides with the q dimension of the reference representation $\pi_{\Lambda_{0}}$, i.e.

$$
\chi_{0}\left(C^{\Lambda_{0}}\right)=D_{q}\left(\Lambda_{0}\right)
$$

with

$$
D_{q}\left(\Lambda_{0}\right)=\prod_{p=1}^{K} \frac{q^{\left(\Lambda_{0}+\rho, \alpha(p)\right)}-q^{-\left(\Lambda_{0}+\rho, \alpha(p)\right)}}{q^{(\rho, \alpha(p))}-q^{-(\rho, \alpha(p))}} .
$$

Define a new central element $C_{\hat{L}^{0} \in U_{q}(g)}$ by

$$
C_{L_{0}}^{\Lambda_{0}}=\left[C^{\Lambda_{0}}-D_{q}\left(\Lambda_{0}\right)\right] /\left(q-q^{-1}\right)^{2} .
$$

In the limit $q \rightarrow 1, C_{L}^{\Lambda^{0}}$ reduces to $\frac{1}{2} l_{\Lambda_{0}} C_{L}$, where C_{L} is the quadratic Casimir of the Lie algebra g, and $I_{\Lambda_{0}}$ is the Dynkin index [11] of the representation $\left.\pi_{A_{0} \mid}\right|_{q=1}$ of g, given by $I_{\Lambda_{0}}=\left(\Lambda_{0}+2 \rho, \Lambda_{0}\right) \operatorname{dim} \pi_{\Lambda_{0}} / \operatorname{dim} g$. Using equation (2) we obtain

$$
\begin{align*}
& C_{L}^{\Lambda_{0}}=\left(q-q^{-1}\right)^{-2} \operatorname{tr}_{\pi_{A_{A_{0}}}}\left\{q^{2 \sum_{\mu=1}^{r} H_{\mu} \pi_{A_{0}}\left(H_{\mu}\right)}\right. \\
& \times \sum_{\{m),\{n\}} \prod_{K_{k} l=1}^{K}\left[\frac{\left(1-q^{-2}(k)\right)^{n_{k}}\left(1-q^{-2}(l)\right)^{m_{l}} q^{-n_{k} n_{l}(\alpha(k), \alpha(l))}}{\left(n_{k}\right)_{q(k)}!\left(m_{l}\right)_{q(l)}!}\right] \\
& \times q^{\left.-\sum_{p=1}^{K} n_{p} h_{\alpha(p)}\right)}(F(1))^{n_{1}} \ldots(F(K))^{n_{K}}(E(1))^{m_{1}} \ldots(E(K))^{m_{K}} \\
& \times \pi_{\Lambda_{0}}\left[q^{\left.\sum_{p=1}^{K}\left(n_{p}+1\right) h_{\alpha(p)}\right)}(E(1))^{n_{1}} \ldots(E(K))^{n_{K}}(F(1))^{m_{1}} \ldots(F(K))^{m_{K}}\right] \\
&-\pi_{A_{0}}\left(q^{\left.2 h_{\rho}\right)}\right\} . \tag{5}
\end{align*}
$$

We emphasize that equation (5) is an explicit formula. It is seemingly complex, but in fact very easy to handle, especially when we choose $\pi_{\Lambda_{0}}$ to be a minimal representation of $U_{q}(g)$ (if $U_{q}(g)$ admits any), since now all the n_{p}, m_{p} 's can only take values 0 and 1.

Now we consider the co-multiplication of $C_{L}^{\lambda_{\mathrm{n}}}$. Since

$$
(\Delta \otimes \mathrm{i} d) \Gamma=\left(R^{T}\right)_{23}\left(R^{T}\right)_{13} R_{13} R_{23}
$$

we immediately obtain

$$
\begin{gather*}
\Delta\left(C_{L^{0}}^{\Lambda_{0}}\right)=\left(q-q^{-1}\right)^{-2} \operatorname{tr}_{\pi_{\Lambda_{0}}}\left\{\left(\mathrm{i} d \otimes \mathrm{i} d \otimes \pi_{\Lambda_{0}}\right)\left(1 \otimes 1 \otimes q^{2 h_{\rho}}\right)\right. \\
\left.\times\left[\left(R^{T}\right)_{23}\left(R^{T}\right)_{13} R_{13} R_{23}-1 \otimes 1 \otimes 1\right]\right\} . \tag{6}
\end{gather*}
$$

By using (2) in (6), $\Delta\left(C_{L}^{A_{0}}\right)$ can be computed explicitly. Now let

$$
\begin{equation*}
A=\Delta\left(C_{L^{0}}^{\Lambda_{0}}\right)-C_{L^{0}}^{\Lambda_{0}} \otimes 1-1 \otimes C_{L_{0}}^{\Lambda_{0}} \tag{7}
\end{equation*}
$$

and define

$$
\begin{equation*}
I_{m}^{\Lambda_{0}}=\mathrm{tr}_{\pi_{A_{0}}}\left\{\left(\mathrm{i} d \otimes \pi_{\Lambda_{0}}\right)\left[\left(1 \otimes q^{2 h_{p}}\right) A^{m}\right]\right\} \quad 1<m \in \mathbb{Z}^{+} \tag{8}
\end{equation*}
$$

Then $I_{m}^{\Lambda_{o}}$ belongs to the centre of $\mathrm{U}_{4}(g)$; when acting on the irreducible $\mathrm{U}_{q}(g)$ module $V(\Lambda)$ with highest weight Λ, it takes the eigenvalue

$$
\begin{equation*}
\chi_{\Lambda}\left(I_{m}^{\Lambda_{\mathrm{o}}}\right)=\sum_{l=1}^{N} d_{l}\left[\alpha_{l}(\Lambda)\right]^{m} D_{q}\left(\Lambda+\lambda_{l}\right) / D_{q}(\Lambda) \tag{9}
\end{equation*}
$$

where
$\alpha_{l}(\Lambda)=\left(q-q^{-1}\right)^{-2} \sum_{j=1}^{N} d_{j}\left\{q^{2\left(\Lambda+\lambda_{i}+\rho_{j} \lambda_{j}\right)}+q^{2\left(\rho_{2} \lambda_{l}\right)}-q^{2\left(\Lambda+\rho_{,} \lambda_{l}\right)}-q^{2\left(\lambda_{0}+\rho_{,} \lambda_{i}\right)}\right\}$
as can be proved by the same method used in [1]. In the limit $q \rightarrow 1$, the $I_{m}^{A_{0}}$'s reduce to the Gelfand invariants [4] of the Lie algebra g, and so we call them the generalized Gelfand invariants of the quantum group $\mathrm{U}_{q}(g)$.

4. Generalized Gelfand invariants for $\mathrm{U}_{\mathbf{q}}$ (so(5))

The Cartan matrix for so(5) is

$$
A=\left(\begin{array}{rr}
2 & -1 \\
-2 & 2
\end{array}\right)
$$

We choose the bilinear form (\cdot, \cdot) on H^{*} such that for the simple roots α_{1} and α_{2}, $\left(\alpha_{1}, \alpha_{1}\right)=2\left(\alpha_{2}, \alpha_{2}\right)=2$. The Weyl group element of so(5) which maps all the positive roots into negative ones is $\sigma_{0}=\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}$ where σ_{1} and σ_{2} are the elementary Weyl reflections with respect to the simple roots α_{1} and α_{2} respectively. Following the prescription given in [5], the $E(p), F(p),(p=1,2,3,4)$ for $\mathrm{U}_{q}($ so(5)) can be obtained and we have

$$
\begin{align*}
& E(1)=E_{1} \\
& E(2)=-q^{-1}\left[E_{1}, E_{2}\right]_{q}-1 / 2 \\
& E(3)=q^{-1 / 2}\left[\left[E_{1}, E_{2}\right]_{q^{-1 / 2}}, E_{2}\right] /\left(q^{1 / 2}+q^{-1 / 2}\right) \\
& E(4)=E_{2} \\
& F(1)=F_{1} \tag{11}\\
& F(2)=\left[F_{1}, F_{2}\right]_{q^{-1 / 2}} \\
& F(3)=q^{-1 / 2}\left[\left[F_{1}, F_{2}\right]_{q^{-1 / 2}}, F_{2}\right] /\left(q^{1 / 2}+q^{-1 / 2}\right) \\
& F(4)=F_{2}
\end{align*}
$$

with

$$
\begin{array}{ll}
E_{1}=q^{h_{1} / 2} e_{1} & F_{1}=q^{-h_{1} / 2} e_{2} \\
E_{2}=q^{h_{2} / 2} e_{2} & F_{2}=q^{-h_{2} / 2} f_{2} .
\end{array}
$$

In (11), we have used the q-brackets defined as follows

$$
[A, B]_{q}=q A B-q^{-1} B A .
$$

Inserting (11) in (2) we arrive at the following universal R-matrix of $\mathrm{U}_{q}(\operatorname{so}(5))$

$$
\begin{align*}
R=q^{\left(h_{1}+h_{2}\right) \otimes\left(h_{1}+n_{2}\right)+t_{1}} \otimes h_{2} & \sum_{\{n\}} \frac{\left(1-q^{-2}\right)^{n_{1}+n_{3}}\left(1-q^{-1}\right)^{n_{2}+n_{4}}}{\left(n_{1}\right)_{q}!\left(n_{2}\right)_{q}^{1 / 2}!\left(n_{3}\right)_{q}!\left(n_{4}\right)_{q^{1 / 2}}!} \\
& \times(E(1))^{n_{1}}(E(2))^{n_{2}}(E(3))^{n_{3}}(E(4))^{n_{4}} \\
& \otimes(F(1))^{n_{1}}(F(2))^{n_{2}}(F(3))^{n_{3}}(F(4))^{n_{4}} . \tag{12}
\end{align*}
$$

The smallest non-trivial representation of $\mathrm{U}_{q}(\mathrm{so}(5))$ is that obtained by deforming the spinor representation of so(5), which is four-dimensional with highest weight $\Lambda_{0}=\frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}\right)$. We denote this representation by $\pi_{\Lambda_{0}}$ and take it as the reference representation. Observe that $\pi_{\Lambda_{0}}$ is a minimal representation; a common feature of such representations is

$$
\left[\pi_{A_{n}}(E(p))\right]^{2}=\left[\pi_{A_{0}}(F(p))\right]^{2}=0 \quad \forall p
$$

It is straightforward to calculate $\pi_{A_{0}}\left(e_{i}\right), \pi_{A_{0}}\left(f_{i}\right), i=1,2$, and we have

$$
\begin{array}{ll}
\pi_{A_{0}}\left(e_{1}\right)=\left(\begin{array}{cc}
\mathbf{0} & \sigma_{-} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) & \pi_{A_{0}}\left(f_{1}\right)=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\sigma_{+} & \mathbf{0}
\end{array}\right) \\
\pi_{A_{0}}\left(e_{2}\right)=\left(\begin{array}{cc}
\sigma_{+} & \mathbf{0} \\
\mathbf{0} & \sigma_{+}
\end{array}\right) & \pi_{\lambda_{0}}\left(f_{2}\right)=\left(\begin{array}{cc}
\sigma_{-} & \mathbf{0} \\
\mathbf{0} & \sigma_{+}
\end{array}\right) \tag{13}
\end{array}
$$

where

$$
\sigma_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \sigma_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and where 0 denotes a 2×2 block of zeros. Also

$$
\begin{array}{ll}
\pi_{\Lambda_{0}}(E(1))=q^{1 / 2}\left(\begin{array}{cc}
0 & \sigma_{-} \\
0 & 0
\end{array}\right) & \pi_{\Lambda_{0}}(F(1))=q^{1 / 2}\left(\begin{array}{cc}
0 & 0 \\
\sigma_{+} & 0
\end{array}\right) \\
\pi_{\Lambda_{0}}(E(2))=q^{1 / 4}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -q^{-1} \\
0 & 0
\end{array}\right) & \pi_{\Lambda_{0}}(F(2))=q^{1 / 4}\left(\begin{array}{ccc}
0 & 0 \\
1 & 0 & 0 \\
0 & -q
\end{array}\right) \\
\pi_{\Lambda_{0}}(E(\Lambda))=q^{1 / 2}\left(\begin{array}{cc}
0 & \sigma_{+} \\
0 & 0
\end{array}\right) & \pi_{\Lambda_{0}}(F(3))=q^{1 / 2}\left(\begin{array}{cc}
0 & 0 \\
\sigma_{-} & 0
\end{array}\right) \tag{14}\\
\pi_{\Lambda_{0}}(E(4))=q^{1 / 4}\left(\begin{array}{cc}
\sigma_{+} & 0 \\
0 & \sigma_{+}
\end{array}\right) & \pi_{\Lambda_{0}}(F(4))=q^{1 / 4}\left(\begin{array}{cc}
\sigma_{-} & 0 \\
0 & \sigma_{-}
\end{array}\right) .
\end{array}
$$

Now substitute (14) in the formula (5). Lengthy but straightforward manipulations lead to

$$
\begin{align*}
& C_{2}^{A_{0}}=\frac{1}{\left(q-q^{-1}\right)^{2}}\left\{q ^ { 2 } \left(q^{\left.\left.h_{1}+2 h_{2}-1\right)+q\left(q^{h_{1}}-1\right)+q^{-1}\left(q^{-h_{1}}-1\right)+q^{-2}\left(q^{-h_{1}-2 h_{2}}-1\right)\right\}}\right.\right. \\
&+q F(1) E(1)+q^{1 / 2} \frac{q^{h_{2}+1 / 2}+q^{-h_{2}-1 / 2}}{\left(q^{1 / 2}+q^{-1 / 2}\right)^{2}} F(2) E(2) \\
&+F(3) E(3)+q^{-1 / 2} \frac{q^{h_{1}+h_{2}+3 / 2}+q^{-h_{1}-h_{2}-3 / 2}}{\left(q^{1 / 2}+q^{-1 / 2}\right)^{2}} F(4) E(4) \\
&+\frac{q^{1 / 2}-q^{-1 / 2}}{q^{1 / 2}+q^{-1 / 2}\left\{-q^{-h_{2}+1 / 2} F(1) F(4) E(2)+F(2) F(4) E(3)\right.} \\
&\left.+q^{h_{2}+1 / 2} F(2) E(1) E(4)-q F(3) E(2) E(4)\right\} \\
&-q\left\{\frac{q^{1 / 2}-q^{-1 / 2}}{q^{1 / 2}+q^{-1 / 2}}\right\}^{2} F(2) F(4) E(2) E(4) . \tag{15}
\end{align*}
$$

In the limit $q \rightarrow 1$, the last two terms in (15) vanish and, because the Dynkin index of the spinor representation of $s o(5)$ is 1 , the other terms produce $\frac{1}{2} C_{L}$, where C_{L} is the quadratic Casimir operator for so(5). This is in agreement with the general result stated earlier.

Using (6) we can work out the operator A which commutes with $\Delta\left(U_{q}(s o(5))\right)$, and in turn we can construct the higher order central elements $I_{m}^{t_{0}}$ of $\mathrm{U}_{q}(\mathrm{so}(5))$ by utilizing equation (8). However, it turns out that both $I_{2}^{A_{0}}$ and $I_{3}^{A_{0}}$ are linear combinations of $C_{L^{\prime}}^{0_{0}}$ given in (15) and constant terms; a new central element arises from $I_{4}^{\Lambda_{0}}$, which, containing terms like $F(2) F(4) E(2) E(4) F(3) E(2) E(4) F(1) F(4) E(2)$ etc, is very messy, thus we do not spell it out explicitly here.

5. Concluding remarks

An important question that remains to be answered is whether the $I_{m}^{\lambda_{o}}$'s generate the centre of the quantum group $U_{q}(g)$. We expect the answer to be affirmative, and hope to present a detailed study of this question elsewhere.

Finally we want to mention that a different set of central elements can be obtained using the general method of $[1,10]$, namely

$$
C_{m}^{\Lambda_{0}}=\operatorname{tr}_{\pi_{\Lambda_{0}}}\left[\left(\mathrm{i} d \otimes \pi_{\Lambda_{0}}\right)\left(1 \otimes q^{2 h_{\rho}}\right) \Gamma^{m}\right] \quad m \in \mathbb{Z}
$$

where $\Gamma=R^{T} R$. The eigenvalues of the $C_{m}^{A_{0}}$, can also be easily computed, and it is very likely that the $C_{m}^{\Lambda_{0}}, m \geqslant 1$, also generate the centre of $U_{q}(g)$.

References

[1] Gould M D, Zhang R B and Bracken A J 1991 Generalized Gelfand invariants and characteristic identities for quantum groups J. Math. Phys. to appear
[2] Gelfand I M 1950 Mat. Sbornik 26103
[3] Louck J D and Biedenharn L C 1970 J. Math. Phys. 112368
[4] Edwards S A 1978 J. Math. Phys. 19164
[5] Kirillov A N and Reshetikhin N Yu $1990 q$-Weyl group and a multiplicative formula for universal R-matrices Preprint Harvard HUTMP 90/B261
[6] Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11247
[7] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1988 Algebra and Analysis 1129
[8] Mkrtchyan R L and Zurabyan L A 1989 Casimir operators for quantum sin groups Preprint YERPHI 261149
Rodriguez-Plaza M J 1990 Casimir operators of $\mathrm{U}_{q}(\mathrm{sl}(3))$ Preprint Cambridge DAMTP/R 90-10
[9] Drinfeld V G 1986 Proc. Int. Congr. Math. MSRI, Berkeley 798
[10] Zhang R B, Gould M D and Bracken A J 1991 Quantum group invariants and link polynomials Commun. Math. Phys. to appear
[11] Dynkin E B 1975 Am. Math. Soc. Transl. (2) 6111
Onishchik A L and Vinberg E B 1990 Seminar on Lie Groups and Algebraic Groups (Berlin: Springer)

