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Generalized Gelfand invariants of quantum groups 

R B Zhang, M D Could and  A J Bracken 
Depanment of Mathematics, University of Queensland, Brisbane QLD 4072, Australia 

Received 26 October 1990 

Abstract. Generalized Gelfand invariants of quantum groups are explicitly constructed, 
using a general procedure given in an earlier publication together with the Kirillov- 
Rerhetikhin formula for universal R-matrices. As examples, invariants of U,,(so(S)) are 
considered. 

1. Introduction 

In an earlier publication 111, we presented a general method for constructing quantum 
group invariants using universal R-matrices, and  determined their eigenvalues in 
arbitrary irreducible highest weight representations. These invariants reduce to (slight 
variations of) the Gelfand invariants of the corresponding simple Lie algebras in the 
9 +  1 limit. (For a discussion of Gelfand invariants see [2,3] and especially [4].) As 
we demonstrated with the example ofU,(sl(m)),  this method enables one to construct 
explicitly the generalized Gelfand invariants o f a  quantum group whenever the universal 
R-matrix is known. 

Recently, Kirillov and  Reshetikhin [5] have developed an  explicit formula for 
universal R-matrices of quantum groups by studying the associated 9- Weyl groups. 
The aim of this paper is to apply their formula to the general method developed in 
[ 11, and thus to obtain the generalized Gelfand invariants of quantum groups in explicit 
form. 

As a concrete example, we study the simplest non-A,-type quantum group, 
U,(s0(5)), in some detail. Previously, the generalized Gelfand invariants of the quantum 
groups U,(A,) were studied quite extensively [ l ,  6-81, especially those of U,(A,) and 
U,(A,) [SI. However, none of the invariants of other quantum groups were given 
explicitly before. The case ofU,(so(5)) is of particular interest because it is the simplest 
quantum group arising from the deformation of the universal enveloping algebra of a 
Lie algebra whose roots are not all of equal length, i.e. one that is not simply laced. 
Consequently, this case exhibits features which the A,-type quantum groups d o  not. 
For example, the quantum Weyl group of U,(so(5)) differs markedly from that of 
U,(A,v). 

2. Quantum groups 

Recall that [6,7,9] corresponding to each simple Lie algebra g of rank r there is a 
quantum group U,(g) generated by simple elements e , , J  and Cartan elements h,, for 
i = 1,2, , , . , r. Let {a, I i = 1,2 , .  . . , I )  be a set of simple roots of g, and let (a,,) be the 
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corresponding Cartan matrix, where a, = 2 ( a , ,  a , { ) / ( a j ,  ai), with (., .) the invariant 
bilinear form on H*, normalized in such a way that the maximum value of (a;, ai) 
for i = 1,2,. . . , r is 2. Here H* is the dual of the vector space H spanned by the h,'s. 
Then ei,f;, hi are required to satisfy the following relations: 

R B Zhang et al 

[ h i ,  h j ]=O 

V i ,  j 

where 0 # q E C, q; = q'"""''/2, and 

[ m l , ! / ( [ m  - n ] , ! [ n ] ! )  [:I4=L n = O , m  
m > n > 0 

with 

[ m l ,  = (4"' - qC ' " / (q -q - ' )  

[ m ] , ! = [ m ] , [ m - 1 ] , .  . . [ I ] , .  

Then U,(g) has the structure of a Hopf algebra with the co-multiplication A: U,(g)+ 
U,(g)@U,(g)  

A( ei) = e i @ q h J 2 +  q-hm/2@ej 

A(f;) =f ;@qh. / *+  q - h , / 2 0  x 1 ;  

A(hj)  = hi@ 1 + 1 0  hi 

E ( 1 ) = 1  & ( h i ) =  E ( e j ) =  E ( f ; ) = O  V i  

S ( I ) = l  S ( h j )  = - h i  S(e,) = -qiej S(f; )  = -qT% 

V i  

co-unit E : U,(g) + C 

and antipode S : U , ( g ) + U , ( g )  

For each U,(g), there exists an invertible element R ~ U , ( g ) @ u , ( g ) ,  which is 
called the universal R-matrix of U,(g),  such that 

R A ( a ) = A ( a ) R  v n  E U&) 

(A@id)R = R,,R,, (id@A)R = R13R,, 

where A ' =  T .  A with T:U,(g)@U,(g)+U,(g)@U,(g)  defined by 

T ( a @ b ) = b @ a  V a ,  b E  U,(g) 

and we say that (UJg),  R )  constitutes a quasitriangular Hopf algebra [9]. 

Reshetikhin [SI using quantum Weyl group techniques, which reads 
An explicit formula for the universal R-matrix has been obtained by Kirillov and 
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where 

n,,Eh+ V P  
K =+(dim g -  r )  

q ( p )  = q ( e ( ~ ) . m ( ~ ) J / 2  

witha(p)EH*def inedby[h , ,E(p) ]=(a , ,a (p) )E(p) ,Vi .  I n ( 2 ) , H P , p = 1 , 2  ,._., r 
are the Cartan elements such that 

E aW,)P(H,) = (a, P )  Wa, E H *  
* = I  

where a ( H , ) ,  p ( H + ) e C  are the evaluations of a , p e H *  on H , E H .  The E ( p ) ,  
F ( p ) e U , ( g ) ,  Vp are defined explicitly in  [SI. Due to the lack of space we do not 
describe them here and refer to [ 5 ]  for details. However, it is worth pointing out that 
in the limit q +  1 ,  E ( p )  and F ( p )  reduce respectively to the raising and lowering 
operators of g shifting weight by a ( p ) .  

3. Invariants 01 quantum groups 

Define 

T = R ~ R  R T = T ( R ) .  

It is important to observe that r #  1 0 1  since U , ( g )  is not triangular, though 
quasitriangular. Let r,,, be a non-trivial representation of U,(g) afforded by the 
finite-dimensional irreducible module V(A,) with highest weight Ao, and assume that 
A , ,  A,, . . . , A N  are the distinct weights of V(A,,) with multiplicities d , ,  d 2 , .  . , , d ,  
-ne-nc.:.,~i.. hi -... ..._ -,...Ct _.._ + r i  ~m 
1 c " p ' C c L " L 1 J .  1.uw w c  C U l l D I l U C L  L . ,  A", 

C"o= tr [ ( i d 0 ~ , , ) ( 1 @ q ' ~ ~ ) T ]  E U,(g) ( 3 )  

where the trace is taken over the irreducible representation rAO, and h, E H c U , ( g )  
is the Cartan element such that P(h, , )  = (p, p ) ,  V p  E H*,  with 

K 

P = f  C 4 P ) .  
p = ,  

Using results from [lo] we proved in [l] that CA" belongs to the centre of U,(g), and 
when acting on the irreducible U,(g)-module V(A) with highest weight A, takes the 
eigenvalue 

Observe that when V(A) is trivial, i.e. h=O, then ,y,,(C"") coincides with the q. 
dimension of the reference representation rA,,, i.e. 

X ~ C " ~ )  = Dq(Ao) 



940 

with 
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K q I A u + ~ . m I  rill- q - ( A o + ~ . m l  p l l  

q-("~a(pll . 
D&o)= n qlp."'pll- 

p - l  

Define a new central element C ~ E  U&) by 

C 2 =  [CA"- Dq(Ao)] / (q-q- ' ) ' .  

In the limit q +  1, C p  reduces to flA,CL, where C ,  is the quadratic Casimir of the Lie 
algebra g, and I,," is the Dynkin index 1111 of the representation ?rllnI4=, of g, given 
by (Ao+2p, AJ dim w,,,,/dim g. Using equation (2) we obtain 

cp=(q-q- ' ) -2 t r" r"  q2z:-l ""50("J 

1 (1  - q - 2 ( k ) ) " * ( 1  -q-'(/)),q-',.,c'cX,.""" 

(n&kl!(miL,(il! 

i 
X I  T i [  

( m l , ( n l  k.1-l  

x ~ - ~ ~ - ~ - ' ~ ~ ~ ~ ~ ~ ( F ( I ) ) " ~ . .  . (F(K))"X(E(l))ml. .  . ( E ( K ) ) " x  

A q  "[ Xf-, ( n p + l l h  "i.](E(l))"' ... ( E ( K ) ) " * ( F ( l ) ) " l  . .  . ( F ( K ) ) " X ]  

We emphasize that equation ( 5 )  is an explicit formula. It is seemingly complex, but 
in fact very easy to handle, especially when we choose rAn to be a minimal representation 
of U,(g) (if U,(g) admits any), since now all the n,,, m,,'s can only take values 0 
and 1. 

Now we consider the co-multiplication of Cp. Since 

( A O i d ) r =  (Rr)21(RT),3R,3R23 
we immediately obtain 

A(C9)  = ( q  - q-')-* trm,,)(id B i d 0  a , , ) ( 1 0 1 0 q 2 h ~ )  

X [(RT)23(RT)t3R,,R,3- 10 1 0  111. 
By using (2) in ( 6 ) ,  A(@) can be computed explicitly. Now let 

(6) 

A = A ( C P ) - C ~ B ~  - iocp (7) 

is; 
and define 

3 / - - 7 +  
,-. , , ,CL . !Ac=+-  (,:>m- > r 1 * o - 2 h i \  * m m  

m L 1 n ~ , , l l l ~ V ' ~ ' A . l l l ~ V Y  l f l  j I  

Then I^. belongs to the centre of U,(g); when acting on the irreducible U&) module 
V(A) with highest weight A, it takes the eigenvalue 

N 

X A ( ~ > ) =  I di[a,(A)I"D,(A+hi)/D,(A) (9) 
I = ,  

where 
N 

(10) al(A)=(q-q-l)-2 d,( 21A+*,+r,.h,1+q21,1.*,I_ q2'"+,L"l  - q2~.\"+,',*,'] 
, 9  

i - 1  

as can be proved by the same method used in [l]. In the limit q* 1, the 1 2 s  reduce 
to the Gelfand invariants [4] of the Lie algebra g, and so we call them the generalized 
Gelfand invariants of the quantum group U,(g). 
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4. Generalized Gelfand invariants for U,(s0(5)) 

The Cartan matrix for so(5) is 

We choose the bilinear form (., . )  on H* such that for the simple roots a, and a2. 
(aI, a,) = 2(a,, a2)  =2. The Weyl group element of so(5) which maps all the positive 
roots into negative ones is u,,=u,u2u,u~ where U ,  and u2 are the elementary Weyl 
reflections with respect to the simple roots a, and a2 respectively. Following the 
prescription given in [ 5 ] ,  the E ( p ) ,  F ( p ) ,  ( p  = 1,2,3,4) for U,(so(S)) can be obtained 
and we have 

E (  1) = E ,  
E ( 2 )  = -q - ' [E , ,  E2Iq.1/' 

E ( 3 )  = q- ' / ' [ [E , ,  E2]q- ' , l ,  E 2 1 / ( q ' / * + q - 1 / 2 )  
E(4) = E2 
F ( l ) = F ,  

F(2)=[FI,  F2Jq-iii 

F ( 3 )  = q-1'2[[F, ,  F2]y-w, F J / ( q " 2 + q - ' / 2 )  

F(4) = F2 
with 

E ,  = qht12e, F,  = q - h c / ' e ,  

E> = qhXi2e, F2 = q-h2'zh. 

In ( ] I ) ,  we have used the q-brackets defined as follows 

[A,  B] ,  = qAB-q-'BA. 

Inserting (11) in ( 2 )  we arrive at the following universal R-matrix of U,(so(S)) 
(1  - q - 2 ) " ' + " 1 ( 1  - q - ' ) " 2 + " 4  

1 
I n /  (n,)u!(n2)qlii!(n3)q!(n4)111/2! 

R = q i h , + h 2 ) @ i h , + h ~ ) + ' . - ~ h ~  

x (E(l))",(E(2))"*(E(3))"'(E(4))"~ 

@(F(1))"1( F(2))"' (F(3) )"?(F(4) )"&,  (12 )  
The smallest non-trivial representation of U,(s0(5)) is that obtained by deforming 

the spinor representation of so(5), which is four-dimensional with highest weight 
A,=f(a,+2a2).  We denote this representation by T,," and take it as the reference 
representation. Observe that T,,,, is a minimal representation; a common feature of 
such representations is 

[?i,,LE( p))12 = [v , \ , , (F(  ~ ) ) l ' =  0 VP. 
It is straightforward to calculate m,,,,(e;), n,,"(J), i =  1,2, and we have 
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where 
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0 1  0 0  
-=(o 0 )  g-=(1 0 )  

and where 0 denotes a 2 x2 block of zeros. Also 

Now substitute (14) in the formula (5). Lengthy but straightforward manipulations 
lead to 

+ qh'+''*F(2)E( 1 ) E(4) - qF( 3 ) E ( 2 ) E  (4)) 

In the limit q+ 1, the last two terms in (15) vanish and. because the Dynkin index 
of the spinor representation of so(5) is 1, the other terms produce $CL, where CL is 
the quadratic Casimir operator for so($ This is in agreement with the general result 
stated earlier. 

Using (6) we can work out the operator A which commutes with A(U,(so(S))), 
and in turn we can construct the higher order central elements J i o  of U,,(soiS)) by 
utilizing equation (E). However, i t  turns out that both [>and 1:" are linear combina- 
tions of C:. given in ( 1 5 )  and constant terms; a new central element arises from 19, 
which, containing terms like F(2)F(4)€(2)E(4)F(3)E(2)E(4)F(1)F(4)E(Z) etc, is 
very messy, thus we do not spell it out explicitly here. 
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5. Concluding remarks 

An important question that remains to be answered is whether the 12s generate the 
centre of the quantum group U&). We expect the answer to be affirmative, and hope 
to present a detailed study of this question elsewhere. 

Finally we want to mention that a different set of central elements can be obtained 
using the general method of [ I ,  101, namely 

where I'=RrR. The eigenvalues of the C ~ S  can also be easily computed, and it is 
very likely that the C > ,  m 3 1, also generate the centre of U , ( g ) .  
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