

Generalized Gelfand invariants of quantum groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 937

(http://iopscience.iop.org/0305-4470/24/5/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 01/06/2010 at 14:09

Please note that terms and conditions apply.

Generalized Gelfand invariants of quantum groups

R B Zhang, M D Gould and A J Bracken

Department of Mathematics, University of Queensland, Brisbane QLD 4072, Australia

Received 26 October 1990

Abstract. Generalized Gelfand invariants of quantum groups are explicitly constructed, using a general procedure given in an earlier publication together with the Kirillov-Reshetikhin formula for universal *R*-matrices. As examples, invariants of $U_g(so(5))$ are considered.

1. Introduction

In an earlier publication [1], we presented a general method for constructing quantum group invariants using universal *R*-matrices, and determined their eigenvalues in arbitrary irreducible highest weight representations. These invariants reduce to (slight variations of) the Gelfand invariants of the corresponding simple Lie algebras in the $q \rightarrow 1$ limit. (For a discussion of Gelfand invariants see [2, 3] and especially [4].) As we demonstrated with the example of $U_q(sl(m))$, this method enables one to construct explicitly the generalized Gelfand invariants of a quantum group whenever the universal *R*-matrix is known.

Recently, Kirillov and Reshetikhin [5] have developed an explicit formula for universal *R*-matrices of quantum groups by studying the associated q-Weyl groups. The aim of this paper is to apply their formula to the general method developed in [1], and thus to obtain the generalized Gelfand invariants of quantum groups in explicit form.

As a concrete example, we study the simplest non- A_N -type quantum group, $U_q(so(5))$, in some detail. Previously, the generalized Gelfand invariants of the quantum groups $U_q(A_N)$ were studied quite extensively [1, 6-8], especially those of $U_q(A_1)$ and $U_q(A_2)$ [8]. However, none of the invariants of other quantum groups were given explicitly before. The case of $U_q(so(5))$ is of particular interest because it is the simplest quantum group arising from the deformation of the universal enveloping algebra of a Lie algebra whose roots are not all of equal length, i.e. one that is not simply laced. Consequently, this case exhibits features which the A_N -type quantum groups do not. For example, the quantum Weyl group of $U_q(so(5))$ differs markedly from that of $U_q(A_N)$.

2. Quantum groups

Recall that [6, 7, 9] corresponding to each simple Lie algebra g of rank r there is a quantum group $U_q(g)$ generated by simple elements e_i , f_i and Cartan elements h_i , for i = 1, 2, ..., r. Let $\{\alpha_i | i = 1, 2, ..., r\}$ be a set of simple roots of g, and let (a_{ij}) be the

corresponding Cartan matrix, where $a_{ij} = 2(\alpha_i, \alpha_j)/(\alpha_i, \alpha_i)$, with (\cdot, \cdot) the invariant bilinear form on H^* , normalized in such a way that the maximum value of (α_i, α_i) for i = 1, 2, ..., r is 2. Here H^* is the dual of the vector space H spanned by the h_i 's. Then e_i, f_i, h_i are required to satisfy the following relations:

$$\begin{bmatrix} h_i, h_j \end{bmatrix} = 0 \begin{bmatrix} h_i, h_j \end{bmatrix} = (\alpha_i, \alpha_j) e_j \qquad [h_i, f_j] = -(\alpha_i, \alpha_j) f_j \qquad \forall i, j \sum_{t=0}^{1-a_{ij}} (-1)^t \begin{bmatrix} 1-a_{ij} \\ t \end{bmatrix}_{q_i} e_i^{1-a_{ij}-t} e_j e_i^t = 0 \qquad i \neq j$$
 (1)

$$\sum_{t=0}^{1-a_{ij}} (-1)^t \begin{bmatrix} 1-a_{ij} \\ t \end{bmatrix}_{q_i} f_i^{1-a_{ij}-t} f_j f_i^t = 0 \qquad i \neq j$$

where $0 \neq q \in \mathbb{C}$, $q_i = q^{(\alpha_i, \alpha_i)/2}$, and

$$\begin{bmatrix} m \\ n \end{bmatrix}_{q} = \begin{cases} [m]_{q}!/([m-n]_{q}![n]!) & m > n > 0 \\ 1 & n = 0, m \end{cases}$$

with

$$[m]_q = (q^m - q^{-m})/(q - q^{-1})$$

$$[m]_q! = [m]_q [m - 1]_q \dots [1]_q.$$

Then $U_q(g)$ has the structure of a Hopf algebra with the co-multiplication $\Delta: U_q(g) \rightarrow U_q(g) \otimes U_q(g)$

$$\Delta(e_i) = e_i \otimes q^{h_i/2} + q^{-h_i/2} \otimes e_i$$

$$\Delta(f_i) = f_i \otimes q^{h_i/2} + q^{-h_i/2} \otimes f_i$$

$$\Delta(h_i) = h_i \otimes 1 + 1 \otimes h_i \qquad \forall i$$

co-unit $\varepsilon: U_q(g) \to \mathbb{C}$

$$\varepsilon(1) = 1$$
 $\varepsilon(h_i) = \varepsilon(e_i) = \varepsilon(f_i) = 0$ $\forall i$

and antipode $S: U_q(g) \rightarrow U_q(g)$

$$S(1) = 1$$
 $S(h_i) = -h_i$ $S(e_i) = -q_i e_i$ $S(f_i) = -q_i^{-1} f_i$.

For each $U_q(g)$, there exists an invertible element $R \in U_q(g) \otimes U_q(g)$, which is called the universal *R*-matrix of $U_q(g)$, such that

$$R\Delta(a) = \Delta'(a)R \qquad \forall a \in U_q(g)$$

$$(\Delta \otimes id)R = R_{13}R_{23} \qquad (id \otimes \Delta)R = R_{13}R_{12}$$

where $\Delta' = T \cdot \Delta$ with $T: U_q(g) \otimes U_q(g) \rightarrow U_q(g) \otimes U_q(g)$ defined by

$$T(a \otimes b) = b \otimes a \qquad \forall a, b \in U_q(g)$$

and we say that $(U_a(g), R)$ constitutes a quasitriangular Hopf algebra [9].

An explicit formula for the universal R-matrix has been obtained by Kirillov and Reshetikhin [5] using quantum Weyl group techniques, which reads

$$R = q^{\sum_{\mu=1}^{r} H_{\mu} \otimes H_{\mu}} \sum_{\{n\}} \prod_{p=1}^{K} \frac{(1-q^{-2}(p))^{n_{p}}}{(n_{p})_{q(p)}!} (E(1))^{n_{1}} (E(2))^{n_{2}} \dots (E(K))^{n_{K}}$$
$$\otimes (F(1))^{n_{1}} (F(2))^{n_{2}} \dots (F(K))^{n_{K}}$$
(2)

where

$$n_p \in \mathbb{Z}^+ \qquad \forall p$$

$$K = \frac{1}{2} (\dim g - r)$$

$$(n)_q! = \prod_{i=1}^n \frac{1 - q^{-2i}}{1 - q^{-2}}$$

$$q(p) = q^{(\alpha(p), \alpha(p))/2}$$

with $\alpha(p) \in H^*$ defined by $[h_i, E(p)] = (\alpha_i, \alpha(p))E(p), \forall i. \text{ In } (2), H_{\mu}, \mu = 1, 2, ..., r$ are the Cartan elements such that

$$\sum_{\mu=1}^{r} \alpha(H_{\mu})\beta(H_{\mu}) = (\alpha, \beta) \qquad \forall \alpha, \beta \in H^*$$

where $\alpha(H_{\mu})$, $\beta(H_{\mu}) \in \mathbb{C}$ are the evaluations of $\alpha, \beta \in H^*$ on $H_{\mu} \in H$. The E(p), $F(p) \in U_q(g)$, $\forall p$ are defined explicitly in [5]. Due to the lack of space we do not describe them here and refer to [5] for details. However, it is worth pointing out that in the limit $q \rightarrow 1$, E(p) and F(p) reduce respectively to the raising and lowering operators of g shifting weight by $\alpha(p)$.

3. Invariants of quantum groups

Define

$$\Gamma = R^T R \qquad R^T = T(R).$$

It is important to observe that $\Gamma \neq 1 \otimes 1$ since $U_q(g)$ is not triangular, though quasitriangular. Let π_{Λ_0} be a non-trivial representation of $U_q(g)$ afforded by the finite-dimensional irreducible module $V(\Lambda_0)$ with highest weight Λ_0 , and assume that $\lambda_1, \lambda_2, \ldots, \lambda_N$ are the distinct weights of $V(\Lambda_0)$ with multiplicities d_1, d_2, \ldots, d_N respectively. Now we construct [1, 10]

$$C^{\Lambda_0} = \operatorname{tr}_{\pi_{\Lambda_0}}[(\operatorname{id} \otimes \pi_{\Lambda_0})(1 \otimes q^{2h\rho})\Gamma] \in \operatorname{U}_q(g)$$
(3)

where the trace is taken over the irreducible representation π_{Λ_0} , and $h_{\rho} \in H \subset U_q(g)$ is the Cartan element such that $\beta(h_{\rho}) = (\beta, \rho), \forall \beta \in H^*$, with

$$\rho = \frac{1}{2} \sum_{p=1}^{K} \alpha(p).$$

Using results from [10] we proved in [1] that C^{Λ_0} belongs to the centre of $U_q(g)$, and when acting on the irreducible $U_q(g)$ -module $V(\Lambda)$ with highest weight Λ , takes the eigenvalue

$$\chi_{\Lambda}(C^{\Lambda_0}) = \sum_{l=1}^{N} d_l q^{2(\Lambda+\mu,\lambda_l)}.$$
(4)

Observe that when $V(\Lambda)$ is trivial, i.e. $\Lambda = 0$, then $\chi_{\Lambda}(C^{\Lambda_0})$ coincides with the q-dimension of the reference representation π_{Λ_0} , i.e.

$$\chi_0(C^{\Lambda_0}) = D_q(\Lambda_0)$$

with

$$D_q(\Lambda_0) = \prod_{p=1}^{K} \frac{q^{(\Lambda_0+\rho,\alpha(p))} - q^{-(\Lambda_0+\rho,\alpha(p))}}{q^{(\rho,\alpha(p))} - q^{-(\rho,\alpha(p))}}.$$

Define a new central element $C_{L^0}^{\Lambda_0} \in U_q(g)$ by

$$C_L^{\Lambda_0} = [C^{\Lambda_0} - D_q(\Lambda_0)]/(q - q^{-1})^2.$$

In the limit $q \rightarrow 1$, $C_L^{\Lambda_0}$ reduces to $\frac{1}{2}I_{\Lambda_0}C_L$, where C_L is the quadratic Casimir of the Lie algebra g, and I_{Λ_0} is the Dynkin index [11] of the representation $\pi_{\Lambda_0}|_{q=1}$ of g, given by $I_{\Lambda_0} = (\Lambda_0 + 2\rho, \Lambda_0) \dim \pi_{\Lambda_0} / \dim g$. Using equation (2) we obtain

$$C_{L^{0}}^{\Lambda_{0}} = (q - q^{-1})^{-2} \operatorname{tr}_{\pi_{\Lambda_{0}}} \left\{ q^{2\sum_{k=1}^{r} H_{\mu}\pi_{\Lambda_{0}}(H_{\mu})} \right.$$

$$\times \sum_{\{m\},\{n\}} \prod_{k,l=1}^{K} \left[\frac{(1 - q^{-2}(k))^{n_{k}}(1 - q^{-2}(l))^{m_{l}}q^{-n_{k}n_{l}(\alpha(k),\alpha(l))}}{(n_{k})_{q(k)}!(m_{l})_{q(l)}!} \right]$$

$$\times q^{-\sum_{p=1}^{K} n_{p}h_{\alpha(p)}} (F(1))^{n_{1}} \dots (F(K))^{n_{K}} (E(1))^{m_{1}} \dots (E(K))^{m_{K}}$$

$$\times \pi_{\Lambda_{0}} [q^{\sum_{p=1}^{K} (n_{p}+1)h_{\alpha(p)}} (E(1))^{n_{1}} \dots (E(K))^{n_{K}} (F(1))^{m_{1}} \dots (F(K))^{m_{K}}]$$

$$- \pi_{\Lambda_{0}} (q^{2h_{p}}) \right\}.$$
(5)

We emphasize that equation (5) is an explicit formula. It is seemingly complex, but in fact very easy to handle, especially when we choose π_{Λ_0} to be a minimal representation of $U_q(g)$ (if $U_q(g)$ admits any), since now all the n_p , m_p 's can only take values 0 and 1.

Now we consider the co-multiplication of $C_{L^0}^{\Lambda_0}$. Since

$$(\Delta \otimes id)\Gamma = (R^T)_{23}(R^T)_{13}R_{13}R_{23}$$

we immediately obtain

$$\Delta(C_{L}^{\Lambda_{0}}) = (q - q^{-1})^{-2} \operatorname{tr}_{\pi_{\Lambda_{0}}} \{ (\operatorname{id} \otimes \operatorname{id} \otimes \pi_{\Lambda_{0}}) (1 \otimes 1 \otimes q^{2h_{p}}) \\ \times [(R^{T})_{23} (R^{T})_{13} R_{13} R_{23} - 1 \otimes 1 \otimes 1] \}.$$
(6)

By using (2) in (6), $\Delta(C_L^{\Lambda_0})$ can be computed explicitly. Now let

$$\mathbf{A} = \Delta (C_L^{\Lambda_0}) - C_L^{\Lambda_0} \otimes \mathbf{1} - \mathbf{1} \otimes C_L^{\Lambda_0} \tag{7}$$

and define

$$I_{m}^{\Lambda_{0}} = \operatorname{tr}_{\pi_{\Lambda_{0}}}\{(\operatorname{i} d \otimes \pi_{\Lambda_{0}})[(1 \otimes q^{2h_{p}})A^{m}]\} \qquad 1 < m \in \mathbb{Z}^{+}.$$
(8)

Then $I_m^{\Lambda_0}$ belongs to the centre of $U_q(g)$; when acting on the irreducible $U_q(g)$ module $V(\Lambda)$ with highest weight Λ , it takes the eigenvalue

$$\chi_{\Lambda}(I_m^{\Lambda_0}) = \sum_{l=1}^N d_l [\alpha_l(\Lambda)]^m D_q(\Lambda + \lambda_l) / D_q(\Lambda)$$
(9)

where

$$\alpha_{i}(\Lambda) = (q - q^{-1})^{-2} \sum_{j=1}^{N} d_{j} \{ q^{2(\Lambda + \lambda_{i} + \rho, \lambda_{j})} + q^{2(\rho, \lambda_{j})} - q^{2(\Lambda + \rho, \lambda_{j})} - q^{2(\Lambda_{0} + \rho, \lambda_{j})} \}$$
(10)

as can be proved by the same method used in [1]. In the limit $q \rightarrow 1$, the $I_m^{\Lambda_0}$'s reduce to the Gelfand invariants [4] of the Lie algebra g, and so we call them the generalized Gelfand invariants of the quantum group $U_q(g)$.

4. Generalized Gelfand invariants for $U_{q}(so(5))$

The Cartan matrix for so(5) is

$$A = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}.$$

We choose the bilinear form (\cdot, \cdot) on H^* such that for the simple roots α_1 and α_2 , $(\alpha_1, \alpha_1) = 2(\alpha_2, \alpha_2) = 2$. The Weyl group element of so(5) which maps all the positive roots into negative ones is $\sigma_0 = \sigma_1 \sigma_2 \sigma_1 \sigma_2$ where σ_1 and σ_2 are the elementary Weyl reflections with respect to the simple roots α_1 and α_2 respectively. Following the prescription given in [5], the E(p), F(p), (p = 1, 2, 3, 4) for $U_q(so(5))$ can be obtained and we have

$$E(1) = E_{1}$$

$$E(2) = -q^{-1}[E_{1}, E_{2}]_{q^{-1/2}}$$

$$E(3) = q^{-1/2}[[E_{1}, E_{2}]_{q^{-1/2}}, E_{2}]/(q^{1/2} + q^{-1/2})$$

$$E(4) = E_{2}$$

$$F(1) = F_{1}$$

$$F(2) = [F_{1}, F_{2}]_{q^{-1/2}}$$

$$F(3) = q^{-1/2}[[F_{1}, F_{2}]_{q^{-1/2}}, F_{2}]/(q^{1/2} + q^{-1/2})$$

$$F(4) = F_{2}$$
(11)

with

$$E_1 = q^{h_1/2} e_1 \qquad F_1 = q^{-h_1/2} e_2$$
$$E_2 = q^{h_2/2} e_2 \qquad F_2 = q^{-h_2/2} f_2.$$

In (11), we have used the q-brackets defined as follows

$$[A, B]_q = qAB - q^{-1}BA.$$

Inserting (11) in (2) we arrive at the following universal *R*-matrix of $U_q(so(5))$

$$R = q^{(h_1 + h_2) \otimes (h_1 + h_2) + h_2 \otimes h_2} \sum_{\{n\}} \frac{(1 - q^{-2})^{n_1 + n_3} (1 - q^{-1})^{n_2 + n_4}}{(n_1)_q ! (n_2)_q^{1/2} ! (n_3)_q ! (n_4)_q^{1/2} !} \times (E(1))^{n_1} (E(2))^{n_2} (E(3))^{n_3} (E(4))^{n_4} \otimes (F(1))^{n_1} (F(2))^{n_2} (F(3))^{n_3} (F(4))^{n_4}.$$
(12)

The smallest non-trivial representation of $U_q(so(5))$ is that obtained by deforming the spinor representation of so(5), which is four-dimensional with highest weight $\Lambda_0 = \frac{1}{2}(\alpha_1 + 2\alpha_2)$. We denote this representation by π_{Λ_0} and take it as the reference representation. Observe that π_{Λ_0} is a minimal representation; a common feature of such representations is

$$[\pi_{\Lambda_0}(E(p))]^2 = [\pi_{\Lambda_0}(F(p))]^2 = 0 \qquad \forall p.$$

It is straightforward to calculate $\pi_{\Lambda_0}(e_i)$, $\pi_{\Lambda_0}(f_i)$, i = 1, 2, and we have

$$\pi_{\Lambda_0}(e_1) = \begin{pmatrix} \mathbf{0} & \sigma_- \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \qquad \qquad \pi_{\Lambda_0}(f_1) = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \sigma_+ & \mathbf{0} \end{pmatrix}$$
$$\pi_{\Lambda_0}(e_2) = \begin{pmatrix} \sigma_+ & \mathbf{0} \\ \mathbf{0} & \sigma_+ \end{pmatrix} \qquad \qquad \pi_{\Lambda_0}(f_2) = \begin{pmatrix} \sigma_- & \mathbf{0} \\ \mathbf{0} & \sigma_+ \end{pmatrix}$$
(13)

942 R B Zhang et al

where

$$\sigma_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \sigma_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

and where 0 denotes a 2×2 block of zeros. Also

$$\pi_{\Lambda_{0}}(E(1)) \approx q^{1/2} \begin{pmatrix} \mathbf{0} & \sigma_{-} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \qquad \pi_{\Lambda_{0}}(F(1)) \approx q^{1/2} \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \sigma_{+} & \mathbf{0} \end{pmatrix}$$

$$\pi_{\Lambda_{0}}(E(2)) \approx q^{1/4} \begin{pmatrix} \mathbf{0} & 1 & 0 \\ 0 & -q^{-1} \\ \mathbf{0} & 0 \end{pmatrix} \qquad \pi_{\Lambda_{0}}(F(2)) \approx q^{1/4} \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ 1 & 0 \\ 0 & -q \end{pmatrix}$$

$$\pi_{\Lambda_{0}}(E(\Lambda)) \approx q^{1/2} \begin{pmatrix} \mathbf{0} & \sigma_{+} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \qquad \pi_{\Lambda_{0}}(F(3)) \approx q^{1/2} \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \sigma_{-} & \mathbf{0} \end{pmatrix}$$

$$\pi_{\Lambda_{0}}(E(4)) \approx q^{1/4} \begin{pmatrix} \sigma_{+} & \mathbf{0} \\ \mathbf{0} & \sigma_{+} \end{pmatrix} \qquad \pi_{\Lambda_{0}}(F(4)) \approx q^{1/4} \begin{pmatrix} \sigma_{-} & \mathbf{0} \\ \mathbf{0} & \sigma_{-} \end{pmatrix}.$$
(14)

Now substitute (14) in the formula (5). Lengthy but straightforward manipulations lead to

$$C_{L}^{h_{0}} = \frac{1}{(q-q^{-1})^{2}} \{q^{2}(q^{h_{1}+2h_{2}}-1) + q(q^{h_{1}}-1) + q^{-1}(q^{-h_{1}}-1) + q^{-2}(q^{-h_{1}-2h_{2}}-1)\} + qF(1)E(1) + q^{1/2}\frac{q^{h_{2}+1/2} + q^{-h_{2}-1/2}}{(q^{1/2} + q^{-1/2})^{2}}F(2)E(2) + F(3)E(3) + q^{-1/2}\frac{q^{h_{1}+h_{2}+3/2} + q^{-h_{1}-h_{2}-3/2}}{(q^{1/2} + q^{-1/2})^{2}}F(4)E(4) + \frac{q^{1/2} - q^{-1/2}}{q^{1/2} + q^{-1/2}}\{-q^{-h_{2}+1/2}F(1)F(4)E(2) + F(2)F(4)E(3) + q^{h_{2}+1/2}F(2)E(1)E(4) - qF(3)E(2)E(4)\} - q\left(\frac{q^{1/2} - q^{-1/2}}{q^{1/2} + q^{-1/2}}\right)^{2}F(2)F(4)E(2)E(4).$$
(15)

In the limit $q \rightarrow 1$, the last two terms in (15) vanish and, because the Dynkin index of the spinor representation of so(5) is 1, the other terms produce $\frac{1}{2}C_L$, where C_L is the quadratic Casimir operator for so(5). This is in agreement with the general result stated earlier.

Using (6) we can work out the operator A which commutes with $\Delta(U_q(so(5)))$, and in turn we can construct the higher order central elements $I_m^{\Lambda_0}$ of $U_q(so(5))$ by utilizing equation (8). However, it turns out that both $I_{2^{\Lambda_0}}^{\Lambda_0}$ and $I_{3^{\Lambda_0}}^{\Lambda_0}$ are linear combinations of $C_{L^0}^{\Lambda_0}$ given in (15) and constant terms; a new central element arises from $I_{4^{\Lambda_0}}^{\Lambda_0}$, which, containing terms like F(2)F(4)E(2)E(4)F(3)E(2)E(4)F(1)F(4)E(2) etc, is very messy, thus we do not spell it out explicitly here.

5. Concluding remarks

An important question that remains to be answered is whether the $I_m^{\Lambda_0}$'s generate the centre of the quantum group $U_q(g)$. We expect the answer to be affirmative, and hope to present a detailed study of this question elsewhere.

Finally we want to mention that a different set of central elements can be obtained using the general method of [1, 10], namely

$$C_m^{\Lambda_0} = \operatorname{tr}_{\pi_{\Lambda_0}}[(\operatorname{id} \otimes \pi_{\Lambda_0})(1 \otimes q^{2h_p})\Gamma^m] \qquad m \in \mathbb{Z}$$

where $\Gamma = \mathbf{R}^T \mathbf{R}$. The eigenvalues of the $C_m^{\Lambda_0}$'s can also be easily computed, and it is very likely that the $C_m^{\Lambda_0}$, $m \ge 1$, also generate the centre of $U_q(g)$.

References

- Gould M D, Zhang R B and Bracken A J 1991 Generalized Gelfand invariants and characteristic identities for quantum groups J. Math. Phys. to appear
- [2] Gelfand I M 1950 Mat. Sbornik 26 103
- [3] Louck J D and Biedenharn L C 1970 J. Math. Phys. 11 2368
- [4] Edwards S A 1978 J. Math. Phys. 19 164
- [5] Kirillov A N and Reshetikhin N Yu 1990 q-Weyl group and a multiplicative formula for universal *R*-matrices *Preprint* Harvard HUTMP 90/B261
- [6] Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11 247
- [7] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1988 Algebra and Analysis 1 129
- [8] Mkrtchyan R L and Zurabyan L A 1989 Casimir operators for quantum sln groups Preprint YERPHI 26 1149

Rodriguez-Plaza M J 1990 Casimir operators of $U_q(sl(3))$ Preprint Cambridge DAMTP/R 90-10

- [9] Drinfeld V G 1986 Proc. Int. Congr. Math. MSRI, Berkeley 798
- [10] Zhang R B, Gould M D and Bracken A J 1991 Quantum group invariants and link polynomials Commun. Math. Phys. to appear
- [11] Dynkin E B 1975 Am. Math. Soc. Transl. (2) 6 111
 Onishchik A L and Vinberg E B 1990 Seminar on Lie Groups and Algebraic Groups (Berlin: Springer)